Tính đạo hàm cấp n của hàm số \(y = \sqrt {2x + 1} \)

Nguyễn Thị Thương | Chat Online
06/09 17:32:33 (Toán học - Lớp 11)
5 lượt xem

Tính đạo hàm cấp n của hàm số \(y = \sqrt {2x + 1} \)

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(3n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)
0 %
0 phiếu
B. \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)
0 %
0 phiếu
C. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n + 1}}} }}\)
0 %
0 phiếu
D. \({y^{(n)}} = \frac{{{{( - 1)}^{n + 1}}.3.5...(2n - 1)}}{{\sqrt {{{(2x + 1)}^{2n - 1}}} }}\)
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm mới nhất

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k