Cho a là số thực dương tùy ý và \[a \ne 1.\] Mệnh đề nào dưới đây là đúng?
Phạm Văn Phú | Chat Online | |
06/09/2024 20:44:43 (Toán học - Lớp 12) |
7 lượt xem
Cho a là số thực dương tùy ý và \[a \ne 1.\] Mệnh đề nào dưới đây là đúng?
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[{\log _3}a = {\log _a}3.\] 0 % | 0 phiếu |
B. \[{\log _3}a = \frac{1}{{{{\log }_3}a}}.\] 0 % | 0 phiếu |
C. \[{\log _3}a = \frac{1}{{{{\log }_a}3}}.\] 0 % | 0 phiếu |
D. \[{\log _3}a = - {\log _a}3.\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \[f\left( x \right)\]. Hàm số \[y = f'\left( x \right)\] có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình \[f\left( {\sqrt {x + 6} + \sqrt {12 - x} } \right) = f\left( {{m^2} + 2m + 2} \right)\] có nghiệm? (Toán học - Lớp 12)
- Trong không gian Oxyz, cho các điểm \[A\left( {7;{\mkern 1mu} 2;{\mkern 1mu} 3} \right)\], \[B\left( {1;{\mkern 1mu} 4;{\mkern 1mu} 3} \right)\], \[C\left( {1;{\mkern 1mu} 2;{\mkern 1mu} 6} \right)\] và \[D\left( {1;{\mkern 1mu} 2;{\mkern 1mu} 3} ... (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ. Tìm số điểm cực trị của hàm số \[y = {2^{f\left( x \right)}} - {3^{f\left( x \right)}}\]. (Toán học - Lớp 12)
- Cho hai số phức \[{z_1},{z_2}\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = \left| \right| = \left| \right| > 0\]. Tính \[{\left( {\frac{}{}} \right)^4} + {\left( {\frac{}{}} \right)^4}\]. (Toán học - Lớp 12)
- Cho hàm số f(x) liên tục trên đoạn \[\left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] thỏa mãn \[f'\left( x \right).\sin 2x = 1 + 2.f\left( x \right)\] với \[\forall x \in \left[ {\frac{\pi }{4};\frac{\pi }{3}} \right]\] và \[f\left( {\frac{\pi }{4}} ... (Toán học - Lớp 12)
- Cho hàm số \[y = \frac{5}{6}{x^3} + mx - \frac{2}{3}m\] có đồ thị (C), với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m để từ điểm \[A\left( {\frac{2}{3};0} \right)\] kẻ đến (C) được hai tiếp tuyến vuông góc với nhau. Tính tổng tất cả ... (Toán học - Lớp 12)
- Cho các số thực \[a,{\rm{ }}b\] thỏa mãn điều kiện \[0 < b < a < 1\]. Tìm giá trị nhỏ nhất của biểu thức \[P = {\log _a}\frac{{4\left( {3b - 1} \right)}}{9} + 8\log _{\frac{b}{a}}^2a.\] (Toán học - Lớp 12)
- Một hộp đựng 9 thẻ được đánh số 1, 2, 3, 4, ……, 9. Rút ngẫu nhiên đồng thời 2 thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để tích nhận được là số chẵn. (Toán học - Lớp 12)
- Trong không gian Oxyz, cho ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {0;2;0} \right)\], \[C\left( {0;0;3} \right)\]. Tập hợp các điểm M thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bằng (Toán học - Lớp 12)
- Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + z - 5 = 0\] và hai đường thẳng \[{d_1}:\frac{1} = \frac{1} = \frac{{ - 1}},{\rm{ }}{d_2}:\frac{1} = \frac{2} = \frac{1}.\] Viết ... (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)