Tích phân \(I = \int\limits_0^1 {\frac{1}{{{x^2} + 3x + 2}}dx} \) bằng
Nguyễn Thị Sen | Chat Online | |
06/09 23:13:05 (Toán học - Lớp 12) |
3 lượt xem
Tích phân \(I = \int\limits_0^1 {\frac{1}{{{x^2} + 3x + 2}}dx} \) bằng
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(I = \ln \frac{4}{3}.\) 0 % | 0 phiếu |
B. \(I = \ln \frac{3}{2}.\) 0 % | 0 phiếu |
C. \(I = \ln \frac{1}{2}.\) 0 % | 0 phiếu |
D. \(I = \ln \frac{3}{4}.\) 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{\ln x}}{x}\). Giá trị của \(F\left( e \right) - F\left( 1 \right)\) bằng (Toán học - Lớp 12)
- Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx = 5} \) . Giá trị của \(I = \int\limits_0^{\frac{\pi }{2}} {\left[ {f\left( x \right) + 2\sin x} \right]dx} \) là bao nhiêu? (Toán học - Lớp 12)
- Cho \(\int\limits_{ - 1}^2 {f\left( x \right)dx} = 2,\) \(\int\limits_{ - 1}^2 {g\left( x \right)dx} = - 1\). Khi đó \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]} dx\) bằng (Toán học - Lớp 12)
- Cho \(\int\limits_1^2 {f\left( x \right)dx} = 3\) và \(\int\limits_5^2 {f\left( x \right)dx} = 1.\) Giá trị của \(I = \int\limits_1^5 {f\left( x \right)dx} \) là (Toán học - Lớp 12)
- Cho \(\int\limits_0^1 {f\left( x \right)dx = 2} \) và \(\int\limits_0^1 {g\left( x \right)dx = 5} \). Giá trị của \(I = \int\limits_0^1 {\left[ {f\left( x \right) + 2g\left( x \right)} \right]dx} \) là (Toán học - Lớp 12)
- Giá trị của \(I = \int\limits_1^2 {\frac{1}dx} \) là (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right) = {x^3}\) có một nguyên hàm là \(F\left( x \right)\). Khẳng định nào sau đây đúng? (Toán học - Lớp 12)
- Giá trị của \(\int\limits_0^{\frac{\pi }{2}} {\sin xdx} \) bằng (Toán học - Lớp 12)
- Giá trị của \(\int\limits_0^3 {dx} \) bằng (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {1;2} \right]\), \(f\left( 1 \right) = 1\) và \(f\left( 2 \right) = 2\). Tích phân \(I = \int\limits_1^2 {f'\left( x \right)dx} \) bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Xét các số tự nhiên gồm 3 chữ số khác nhau được lập từ các số \[0\,;\,\,3\,;\,\,5\,;\,\,7.\] Xác suất để tìm được một số có dạng \(\overline {3xy} \) là (Toán học - Lớp 9)
- III. Vận dụng Chọn ngẫu nhiên một số tự nhiên có 3 chữ số. Gọi \[A\] là biến cố “Số tự nhiên được chọn gồm 3 chữ số \[3\,;\,\,4\,;\,\,5\]”. Xác suất của biến cố \[A\] là (Toán học - Lớp 9)
- Một hộp có hai bi trắng được đánh số 1 và 2 ,viên bi xanh được đánh số 4 và 5 và 2 viên bi đỏ được đánh số từ 6 và 7. Lấy ngẫu nhiên lần lượt hai viên bi từ hộp. Số phần tử của không gian mẫu là (Toán học - Lớp 9)
- Gieo ngẫu nhiên hai con súc sắc cân đối, đồng chất. Xác suất của biến cố “Tổng số chấm của hai con xúc xắc bằng 6” là (Toán học - Lớp 9)
- Có hai hộp thẻ. Hộp thứ nhất chứa các thẻ được đánh số từ 1 đến 5, hộp thứ hai chứa các thẻ được đánh số từ 6 đến 9. Lần lượt lấy ngẫu nhiên ở mỗi hộp 1 thẻ và viết số tạo thành từ 2 thẻ đó. Không gian mẫu của phép thử có số phần tử là (Toán học - Lớp 9)
- Gieo một đồng xu cân đối và đồng chất ba lần. Xét biến cố \[A:\] “Mặt ngửa xuất hiện ít nhất 1 lần”. Tập hợp mô tả kết quả thuận lợi cho biến cố \[A\] là (Toán học - Lớp 9)
- Một lô hàng có \[1\,\,000\] sản phẩm, trong đó có 50 sản phẩm không đạt yêu cầu. Lấy ngẫu nhiên từ lô hàng đó 1 sản phẩm. Xác suất để sản phẩm lấy ra là sản phẩm tốt là (Toán học - Lớp 9)
- Một xạ thủ bắn vào một tấm bia được chia thành các ô bằng nhau đánh số từ 1 đến 10. Xác suất để xạ thủ bắn được điểm tốt (từ 8 đến 10 điểm) là (Toán học - Lớp 9)
- II. Thông hiểu Lấy ngẫu nhiên hai viên bi từ một thùng có 4 bi xanh, 5 bi đỏ và 6 bi vàng. Số phần tử của không gian mẫu là (Toán học - Lớp 9)
- Bạn An viết lên bảng một số tự nhiên có 2 chữ số và nhỏ hơn 50. Số kết quả thuận lợi của biến cố “Số được viết là số tròn chục” là (Toán học - Lớp 9)