Nếu ∫f(x)dx=x33+ex+C thì f(x) bằng:
Nguyễn Thị Sen | Chat Online | |
30/08 07:46:00 (Toán học - Lớp 12) |
6 lượt xem
Nếu ∫f(x)dx=x33+ex+C thì f(x) bằng:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 0 % | 0 phiếu |
B. 0 % | 0 phiếu |
C. 0 % | 0 phiếu |
D. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho chiếc trống như hình vẽ, có đường sinh là nửa elip được cắt bởi trục lớn với độ dài trục lơn bằng 80cm, độ dài trục bé bằng 60cm. Tính thể tích V của trống (kết quả làm tròn đến hàng đơn vị) (Toán học - Lớp 12)
- Cho tích phân ∫12lnxx2dx=bc+aln2 với a là số thực, b và c là các số nguyên dương, đồng thời bc là phân số tối giản. Tính giá trị của biểu thức P=2a+3b+c (Toán học - Lớp 12)
- Tìm họ nguyên hàm của hàm số y=x2-3x+1x (Toán học - Lớp 12)
- Cho hàm số F(x) là một nguyên hàm của hàm số f(x)=2cosx-1sin2x trên khoảng 0;π. Biết rằng giá trị lớn nhất của F(x) trên khoảng 0;π là 3. Chọn mệnh đề đúng trong các mệnh đề sau? (Toán học - Lớp 12)
- Tính diện tích S của hình phẳng (H) giới hạn bởi các đường cong y=-x3+12x và y=-x2 (Toán học - Lớp 12)
- Gọi F(x) là nguyên hàm trên R của hàm số f(x)=x2eax(a≠0) sao cho F1a=F(0)+1. Chọn mệnh đề đúng trong các mệnh đề sau. (Toán học - Lớp 12)
- Cho tích phân I=∫02f(x)dx=2. Tính tích phân J=∫023f(x)-2dx (Toán học - Lớp 12)
- Cho tích phân I=∫04f(x)dx=32. Tính tích phân J=∫02f(2x)dx (Toán học - Lớp 12)
- Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y=x, y=1 đường thẳng x=4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y=1 bằng (Toán học - Lớp 12)
- Cho hàm số f(x) liên tục trên R và f(2)=16, ∫02f(x)dx=4. Tính tích phân I=∫01xf'(2x)dx (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)