Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Thể tích nhỏ nhất Vmin của khối tứ diện SAMN là
Nguyễn Thị Thảo Vân | Chat Online | |
04/09 08:34:39 (Toán học - Lớp 12) |
3 lượt xem
Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Thể tích nhỏ nhất Vmin của khối tứ diện SAMN là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. Vmin=218 0 % | 0 phiếu |
B. Vmin=49 0 % | 0 phiếu |
C. Vmin=227 0 % | 0 phiếu |
D. Vmin=236 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Xét các số phức z thỏa mãn z=2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức w=2+2iz1+z là (Toán học - Lớp 12)
- Cho hàm số y=−x2x+1 có đồ thị là (C) và đường thẳng d có phương trình y=x+m (m là tham số). Có bao nhiêu giá trị nguyên của m để d cắt (C) tại hai điểm phân biệt A và B sao cho tổng các hệ số góc của các tiếp tuyến với (C) tại A và B là lớn nhất? (Toán học - Lớp 12)
- Cho hàm số y=f(x) không âm và có đạo hàm trên 0;π4 thỏa mãn fx=f'xcosx. Biết f(0)=1, giá trị của fπ4 là (Toán học - Lớp 12)
- Tổng các nghiệm nguyên dương nhỏ hơn 100 của bất phương trình log2x+log14x+3x−4≥1 bằng (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên âm và không nhỏ hơn 10 của m để bất phương trình sin3x+2cos3x2sin23x2+sin3x+2≥m−1 đúng ∀x∈ℝ? (Toán học - Lớp 12)
- Trong không gian Oxyz, cho mặt phẳng P:2x−2y+z=5; và đường thẳng d:x−12=y−34=z5. Gọi (Q) là mặt phẳng chứa d và tạo với (P) một góc nhỏ nhất. Khi đó, tọa độ vectơ pháp tuyến của (Q) là (Toán học - Lớp 12)
- Để lợp ngói một ngôi nhà có dạng mái nhà là lăng trụ đứng thì hết số tiền là 5 triệu đồng (một mái ngói gồm mặt trước nhà và sau nhà). Biết rằng đáy của lăng trụ là tam giác đều có cạnh bằng một nửa chiều dài của mái nhà. Biết thể tích của lăng trụ ... (Toán học - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 4a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Tam giác SAB có diện tích bằng 8a263. Côsin của góc tạo bởi đường thẳng SD và mặt phẳng (SBC) bằng (Toán học - Lớp 12)
- Cho hàm số y=f(x) có đồ thị của đạo hàm y=f'(x) như hình vẽ. Biết f(1)=2 khí đó f(3) bằng (Toán học - Lớp 12)
- Số phức z=a+bi biết z=1+i+i2+2i3+3i4+...+2017i2018. Giá trị của a+b là (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)