Giả sử F(x) = x2 là một nguyên hàm của f(x)sin2x và G(x) là một nguyên hàm của f(x)cos2x trên khoảng (0; π). Biết rằng Gπ2 = 0, Gπ4 = aπ + bπ2 + cln2, với a, b, c là các số hữu tỉ. Tổng a + b + c bằng

Tô Hương Liên | Chat Online
05/09 06:00:33 (Toán học - Lớp 12)
13 lượt xem
Giả sử F(x) = x2 là một nguyên hàm của f(x)sin2x và G(x) là một nguyên hàm của f(x)cos2x trên khoảng (0; π). Biết rằng Gπ2 = 0, Gπ4 = aπ + bπ2 + cln2, với a, b, c là các số hữu tỉ. Tổng a + b + c bằng
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. −2716;
0 %
0 phiếu
B. −2116;
0 %
0 phiếu
C. −516;
0 %
0 phiếu
D. 1116.
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Trắc nghiệm mới nhất

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k