Cho các số thực \(a,b,c\) thỏa mãn \({a^{{{\log }_3}7}} = 27,{b^{{{\log }_7}11}} = 49,{c^{{{\log }_{11}}25}} = \sqrt {11} .\) Giá trị của biểu thức \(A = {a^{{{\left( {{{\log }_3}7} \right)}^2}}} + {b^{{{\left( {{{\log }_7}11} \right)}^2}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}_2}}}\) là
Tôi yêu Việt Nam | Chat Online | |
05/09 06:19:02 (Toán học - Lớp 12) |
8 lượt xem
Cho các số thực \(a,b,c\) thỏa mãn \({a^{{{\log }_3}7}} = 27,{b^{{{\log }_7}11}} = 49,{c^{{{\log }_{11}}25}} = \sqrt {11} .\) Giá trị của biểu thức \(A = {a^{{{\left( {{{\log }_3}7} \right)}^2}}} + {b^{{{\left( {{{\log }_7}11} \right)}^2}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}_2}}}\) là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 129. 0 % | 0 phiếu |
B. 519. 0 % | 0 phiếu |
C. 469. 0 % | 0 phiếu |
D. 729. 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: Số nghiệm của phương trình \(f\left( {{2^{3{x^4} - 4{x^2} + 2}}} \right) + 1 = 0\) là (Toán học - Lớp 12)
- Trong không gian \(Oxyz,\) cho điểm \(A\left( {4; - 1;3} \right)\) và đường thẳng \(d:\frac{2} = \frac{{ - 1}} = \frac{1}.\) Tọa độ điểm \(M\) là điểm đối xứng với điểm \(A\) qua \(d\) là (Toán học - Lớp 12)
- Trong không gian \(Oxyz,\) cho đường thẳng \(d:\frac{2} = \frac{3} = z + 1,\) điểm nào dưới đây thuộc đường thẳng \(d?\) (Toán học - Lớp 12)
- Hàm số y=ax+bcx+d với a>0 có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là đúng? (Toán học - Lớp 12)
- Tập xác định của hàm số \(y = {\log _2}\frac\) là (Toán học - Lớp 12)
- Cho khối lăng trụ có diện tích đáy \(B = 8\) và chiều cao \(h = 6.\) Thể tích của khối lăng trụ đã cho bằng (Toán học - Lớp 12)
- Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OB = OC = a\sqrt 6 ,OA = a.\) Thể tích khối tứ diện đã cho bằng (Toán học - Lớp 12)
- Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là: (Toán học - Lớp 12)
- Đồ thị hình bên là của hàm số nào? (Toán học - Lớp 12)
- Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng \(2a.\) Thể tích khối trụ bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)