Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Bạch Tuyết | Chat Online | |
05/09 11:31:19 (Tổng hợp - Lớp 12) |
7 lượt xem
Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. 403,32 (triệu đồng). 0 % | 0 phiếu |
B. 293,32 (triệu đồng). 0 % | 0 phiếu |
C. 412,23 (triệu đồng). 0 % | 0 phiếu |
D. 393,12 (triệu đồng). 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Tập nghiệm của bất phương trình \[{\left( {\sqrt 5 - 2} \right)^{\frac}} \le {\left( {\sqrt 5 + 2} \right)^x}\] là: (Tổng hợp - Lớp 12)
- Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là: (Tổng hợp - Lớp 12)
- Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\] (Tổng hợp - Lớp 12)
- Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\] (Tổng hợp - Lớp 12)
- Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là: (Tổng hợp - Lớp 12)
- Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)? (Tổng hợp - Lớp 12)
- Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị f′(x) như hình vẽ bên. Bất phương trình \[{\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\] đúng với mọi \[x \in \left( { - 1;4} \right)\;\] khi và chỉ khi (Tổng hợp - Lớp 12)
- Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng (Tổng hợp - Lớp 12)
- Tập nghiệm của bất phương trình \[2017{\log _2}x \le {4^{{{\log }_2}9}}\]là (Tổng hợp - Lớp 12)
- Tập nghiệm của bất phương trình \[{\log _3}x \le {\log _{\frac{1}{3}}}(2x)\] là nửa khoảng \[(a;b]\]. Giá trị của \[{a^2} + {b^2}\;\] bằng (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Trong các phát biểu sau đây phát biểu nào không là mệnh đề. (Tin học)
- Số xâu khác nhau có thể tạo được từ các chữ cái của từ ORONO là: (Tin học)
- Cho quan hệ R = {(a,b) | a|b}trên tập số nguyên dương. Hỏi R KHÔNG có tính chất nào? (Tin học)
- Câu nào sau đây KHÔNG là một mệnh đề? (Tin học)
- Phương trình x + y + z = 15 có số nghiệm nguyên không âm là: (Tin học)
- Cho đồ thị G có 5 đỉnh có bậc lần lượt là 2, 2, 3, 4, 5. Bậc của đồ thị G là: (Tin học)
- Một cây có ít nhất mấy đỉnh treo? (Tin học)
- Cho đồ thị G có 9 đỉnh có bậc lần lượt là 1, 2, 2, 3, 3, 4, 4, 4, 5. Số cạnh của đồ thị G là: (Tin học)
- Cho đồ thị G có bậc là 10. Số cạnh của đồ thị G là: (Tin học)
- Chọn phát biểu nào sau đây là chính xác nhất: (Tin học)