Bài tập  /  Bài đang cần trả lời

Chứng minh rằng

chứng minh rằng: 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
3 Xem trả lời
Hỏi chi tiết
112
1
0
nguyên
06/03/2022 22:10:32
+5đ tặng

Ta có :

7x+4y⋮377x+4y⋮37

⇒(7x+4y)⋅13⋮37=(91x+52y)⋮37⇒(7x+4y)⋅13⋮37=(91x+52y)⋮37
Lại có : 13x+18y⋮3713x+18y⋮37

⇒(13x+18y)⋅7⋮37=(91x+126y)⋮37⇒(13x+18y)⋅7⋮37=(91x+126y)⋮37

⇒(91x+126y)−(91x+52y)⋮37⇒(91x+126y)−(91x+52y)⋮37

⇒91x+126y−91x−52y⋮37⇒91x+126y−91x−52y⋮37

⇒76y⋮37⇒76y⋮37

Có 76⋮3776⋮37nên 13x+18y⋮37

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Võ Duy Anh Tuấn
06/03/2022 22:08:04
+4đ tặng
đúng bài mình vừa làm cho mình 10 đ
4
0
Ngọc Linh
06/03/2022 22:12:44

Ta có :

7x+4y⋮377x+4y⋮37

⇒(7x+4y)⋅13⋮37=(91x+52y)⋮37⇒(7x+4y)⋅13⋮37=(91x+52y)⋮37
Lại có : 13x+18y⋮3713x+18y⋮37

⇒(13x+18y)⋅7⋮37=(91x+126y)⋮37⇒(13x+18y)⋅7⋮37=(91x+126y)⋮37

⇒(91x+126y)−(91x+52y)⋮37⇒(91x+126y)−(91x+52y)⋮37

⇒91x+126y−91x−52y⋮37⇒91x+126y−91x−52y⋮37

⇒76y⋮37⇒76y⋮37

=> Vậy Có 76⋮3776⋮37nên 13x+18y⋮37

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×