Bài tập  /  Bài đang cần trả lời

Khẳng định nào sau đây là đúng

Cho tam giác ABC có AB = 22, AC = 15. Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Khẳng định nào sau đây là đúng? *
1 Xem trả lời
Hỏi chi tiết
78
1
0
Cáø Nhỏ
24/03/2022 14:46:03
+5đ tặng

a, Vì AH là tia phân giác của ∠BAC

=> ∠BAH = ∠HAC = ∠BAC : 2

Xét △EAH vuong tại H và △FAH vuông tại H

Có: AH là cạnh chung     

     ∠EAH = ∠FAH (cmt)

=> △EAH = △FAH (cgv-gn)

=> AE = AF (2 cạnh tương ứng)

Vì M là trung điểm của BC => MB = MC = BC/2

Qua C kẻ đường thẳng song song với AB cắt MF tại D 

Ta có: CD // AB (cách vẽ) => ∠CDF = ∠AEF (2 góc đồng vị)  (1)  và ∠DCB = ∠ABC (2)

Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => ∠AEF = ∠AFE  (3)

Từ (1) và (3) => ∠AFE = ∠CDF hay ∠CFD = ∠CDF

Xét △CFD có: ∠CFD = ∠CDF (cmt) => △CFD cân tại C => CF = CD

Xét △CDM và △BEM

Có: ∠DCM = ∠EBM (cmt).

           MC = MB (cmt)

      ∠CMD = ∠BME (2 góc đối đỉnh)

=> △CDM = △BEM (g.c.g)

=> CD = BE (2 cạnh tương ứng)

Mà CF = CD (cmt)

=> BE = CF

b, Ta có: AF = AC + CF  (4) và AE = AB - BE (5)

Cộng 2 vế của (4) và (5) => AF + AE = AC + CF + AB - BE

Mà AF = AE và CF = BE

=> AE + AE = AC + AB

=> 2AE = AC + AB

=> AE = (AC + AB) : 2

Ta có: BE = AB - AE (6)  và BE = CF mà CF = AF - AC  => BE = AF - AC (7)

Cộng 2 vế của (6) và (7) => BE + BE = AB - AE + AF - AC => 2BE = AB - AC (AE = AF)  => BE = (AB - AC) : 2

c, Xét △MBE có ∠MEA là góc ngoài của △ tại đỉnh E

=> ∠MEA = ∠EMB + ∠EBM  => ∠AEF = ∠BME + ∠EBM => ∠AEF = ∠BME + ∠ABC 

Xét △CFM có ∠MCA là góc ngoài của △ tại đỉnh C 

=> ∠MCA = ∠CFM + ∠CMF   => ∠ACB = ∠CFM + ∠CMF

Mà ∠CFM = ∠AEF (cmt) ; ∠CMF = ∠BME (2 góc đối đỉnh)

=> ∠ACB = ∠AEF + ∠BME  

=> ∠ACB = ∠BME + ∠ABC + ∠BME

=> 2 .  ∠BME + ∠ABC = ∠ACB

=> 2 . ∠BME = ∠ACB - ∠ABC

=> ∠BME = (∠ACB - ∠ABC) : 2 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×