Bài tập  /  Bài đang cần trả lời

Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F

Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F, G. a. Chứng minh các tứ giác BCDE; AEHD nội tiếp đường tròn. b. Chứng minh: BH.BD + CH.CE = BC2. c. Đường tròn ngoại tiếp tam giác AFG cắt đường phân giác của góc BAC tại Q (Q khác A). Khi B, C cố định và A thay đổi trên cung lớn BC của đường tròn (O). Chứng minh rằng đường thẳng HQ luôn đi qua một điểm cố định.
1 Xem trả lời
Hỏi chi tiết
1.664
0
3
phong
02/06/2022 11:34:04

 Xét tứ giác BCDE có ˆBEC=ˆBDC=900BEC^=BDC^=900

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

ˆHCD=ˆABDHCD^=ABD^

Do đó: ΔDHC∼∼ΔDAB

Suy ra: DH/DA=DC/DB

hay DH⋅DB=DA⋅DC

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×