LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng tỏ rằng 2 tia phân giác của hai góc kề bù nhau tạo thành 1 góc vuông

Chứng tỏ rằng 2 tia phân giác của hai góc kề bù nhau tạo thành 1 góc vuông
3 trả lời
Hỏi chi tiết
106
0
0
Ng Nhật Linhh
06/08/2022 20:35:02
+5đ tặng

ta có:

AOC+BOC=1800 (kề bù)

=> 1/2(AOC+BOC)=1/2.1800

mà OM là p/giác AOC => MOC=1/2.AOC

=> 1/2AOC+1/2BOC=900

=> MOC+1/2BOC=900 (1)

mà theo đề: ON | OM (ON nằm trong BOC)

=> MOC+CON=900 (2)

từ (1) và (2) => 1/2BOC=CON

=> ON là p/giác BOC.

=> đpcm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
uz
06/08/2022 20:35:03
+4đ tặng

* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.

* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.

* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy

nên:

{ góc uOz = 1/2 góc xOz

{ góc zOv = 1/2 góc zOy

Suy ra:

{ 2 góc uOz = góc xOz

{ 2 góc zOv = góc zOy

Ta lại có:

góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)

=> 2 góc uOz + 2 góc zOv = 180 độ

=> 2(góc uOz + góc zOv) = 180 độ

=> góc uOz + góc zOv = 90 độ

=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)

=> Tia Ou vuông góc Tia Ov

Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.

Hiiiiiiiiiiiiiii
hình đâu ạ ;-;?
1
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư