LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng tỏ rằng B = 10" + 18n – 1 chia hết cho 27 (với n là số tự nhiên)

----- Nội dung dịch tự động từ ảnh -----
Câu 2: (6 điểm).
1. Chứng tỏ rằng B = 10" + 18n – 1 chia hết cho 27 (với n là số tự nhiên).
2. Tìm các số tự nhiên x, y sao cho (2x+1)(y− 5)=12.
2
+ 3. Tìm hai số nguyên tố x và y sao cho; xẻ − x +1=62 ?+ ?
-
2 trả lời
Hỏi chi tiết
92
2
0
Quỳnh Mai
19/08/2022 19:56:09
+5đ tặng

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Hồng Anh
19/08/2022 20:09:02
+4đ tặng
=9999...999 (n chữ số 9) +18n =9.111....11( n chữ số 1)+9.2n =9(11...111+2n) chia hết cho 9 Vì 1+1+1+....+1 (n số hạng)=n -> 1+1+1+....+1 (n số hạng) +2n=3n chia hết cho 3 -> 9(11...111+2n) chia hết cho 9.3 =27 -> A chia hết cho 27 (đpcm)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư