Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta cần chứng minh bất đẳng thức sau: BC+AH>AB+AC=> BC+AH-AB>AC=> BC-AB>AC-AH (chuyển vế đổi dấu). (1)
=> Ta phải tạo ra một đoạn thẳng bằng AB trên cạnh BC và 1 đoạn bằng AH trên AC để chứng minh bất đẳng thức vùa biến đổi.
Hình phụ: Trên cạnh BC lấy điểm D sao cho AB=BD
Trên cạnh AC lấy điểm E sao cho AH=AE
Thay AB=AD và AH=AE vào (1), ta có: BC-BD>AC-AE=>DC>EC
Vậy ta sẽ chứng minh bất đẳng thức DC>EC thay vì chứng minh BC+AH>AB+AC
Xét tam giác AHD có ^AHD=90o (AH là đường cao)=> ^A1+^HDA=90o (2 góc nhọn trong tam giác vuông phụ nhau) (*)
Ta có: ^A2+^BAD=^BAC. Mà đề cho tam giác ABC vuông tại A=> ^BAC=90o=>^A2+^BAD=90o (**)
Từ (*) và (**)=> ^A1+^HDA=^A2+^BAD=90o (***)
Mà AB=BD theo cách vẽ=> Tam giác ABD cân tại B=> ^BAD=^BDA (2 góc ở đáy) hay ^BAD=^HDA (do H thuộc BD) (****)
Từ (***) và (****) => ^A1=^A2 (Trừ 2 vế cho ^HDA và ^BAD do 2 góc đó bằng nhau)
Xét tam giác AHD và tam giác AED có:
Cạnh AD chung
^A1=^A2 (cmt) => Tam giác AHD = Tam giác AED (c.g.c)
AH=AE theo cách vẽ
=> ^AHD =^AED. Mà ^AHD=90o=> ^AED=90o => ^DEC=90o (kề bù với ^AED)
=> DC là cạnh lớn nhất trong tam giác DEC=> DC>EC
Dựa vào hướng giải của bài toán, ta lại biến đổi DC>EC thành bất đẳng thức ban đầu:
DC>EC=> BC-BD > AC-AE (2)
Thay BD=AB, AE=AH vào (2), ta có: BC-AB>AC-AH. Chuyển vế đổi dấu lại ta được: BC+AH>AB+AC (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |