Bài tập  /  Bài đang cần trả lời

Cho m, n là các số nguyên dương sao cho m^2+ n^2+ m chia hết cho mn. Chứng minh rằng m là số chính phương

Cho m, n là các số nguyên dương sao cho m^2+ n^2+ m chia hết cho mn. Chứng minh rằngm là số chính phương.
1 Xem trả lời
Hỏi chi tiết
281
2
0
Phạm Tuyên
04/02/2023 08:32:37
+5đ tặng

Giả sử m không phải là số chính phương.

Thì m có thể tách thành hai ước a và b sao cho a * b = m và một trong hai số a hoặc b là số lẻ.

Từ điều kiện m^2 + n^2 + m chia hết cho mn, ta có:

(a^2 * b^2 + n^2 + a * b) chia hết cho a * b * n

Do một trong hai số a hoặc b là số lẻ, nên a * b * n không phải là số chính phương.

Nhưng do a^2 * b^2 + n^2 là số chính phương, nên ta có một số chính phương chia hết cho một số không phải chính phương, mặc dù số chính phương không chia hết cho số khác. Điều này là vi phạm, do đó, giả sử của chúng ta là sai.

Do đó, m là số chính phương.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×