cho tam giác ABC cân tại A , có AB=AC ,trên tia đối của tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho DB=CE chứng minh ,a tam giác ADE cân
b gọi m là trung điểm của BC , chứng minh AM là phân giác của góc DAE
c tù B và C kẻ bh và ck theo thued tụ vuông góc với AD và AE chứng minh bh=ck
d chứng minh 3 điểm AM,BH,CK gặp nhau tại 1 điểm
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
A, xét tam giác ABD và tam giác ACE có
AB = AC ( tam giác ABC cân tại A)
MK Góc ABD + ABC = 180 độ
lại có góc ACE + ACB = 180 độ
mà góc ABC = ACB(tam giác ABC cân tại A)
=> Góc ABD =ACE
BD = CE ( GT )
nên tam giác ABD = tam giác ACE (C-G-C)
=> góc ADB = góc AEC
=> tam giác AED cân tại A
b,xét tam giác DAM và tam giác EAM có
AD = AE ( cm a, )
AM cạnh cung
mk có MB=MC(M TĐ BC) (1)
ta lại có BD = CE ( GT) (2)
từ (1) và (2) ta có
DB+BM =CE + MC
hay DM = ME
nên tam giác DAM = tam giác EAM ( C-C-C )
=> góc MAD = MAE
=>AM ph/G góc DAE
c, xét tam giác BAH và tam giác CAK có
góc BHA=CKA ( = 1 vuông )
AC =AB ( tam giác ABC cân tại A)
góc BAH = CAK ( tam giác ABD = tam giác ACE)
nên tam giác BAH = tam giác CA
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |