a, xét tam giác AMB và tam giác AMC có :
AB=AC (gt)
MB=MC (gt)
AM là cạnh chung
suy ra: tam giác AMB = tam giác AMC (c.c.c)
b,Vì tam giác AMB = tam giác AMC ( câu a)
suy ra : góc B =góc C ( 2 góc tương ứng )
xét tam giác MBE và tam giác MCF có:
M1=M2 ( đối đỉnh )
B =C
MB=MC ( gt)
suy ra :tam giác MBE = tam giác MCF (g.c.g)
vì tam giác MBE = tam giác MCF (chứng minh trên)
ME=MF (2 cạch tương ứng )
xét tam giác AEM và tam giác AFM có :
E1=F1
AM là cạnh chung
ME=MF
suy ra : tam giác AEM = tam giác AFM (c.g.c)
vì tam giác AEM = tam giác AFM ( chứng minh trên)
suy ra :AE=AF
c, gọi điểm cắt nhau của EF và AM
Vì tam giác AMB = tam giác AMC (câu b)
suy ra : góc A1 = góc A2 ( 2 góc tương ứng ); góc M1 = góc M2 ( 2 góc tương ứng)
xét tam giác AEH và tam giác AFH có :
A1=A2
AE=AF
AH là điểm chung
suy ra : tam giác AEH = tam giác AFH (c.g.c)
suy ra góc H1= góc H2 ( 2 góc tương ứng)
mà H1+H2=180 (2 góc kề bù)
suy ra : H1=H2=90
suy ra AM vuông góc với EF
mà M1+M2=180
suy ra M1=M2=90
suy ra AM vuông góc với BC
mà AM vuông góc với EF
suy ra EF song song với BC ( 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau )
d, Ta có : AMB = NMC ( đối đỉnh )
+) AMB+AMC= 180 ( 2 góc kề bù )
mà AMC=NMC
suy ra AMB+NMC =180 (3)
mà AMB+NMC = AMN (4)
Từ (3),(4) suy ra : 3 điểm A,M,N thẳng hàng