Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm x: ( x - 1 ) . ( x - 4 ) ≥ 0

(x-1).(x-4)>=0
(8-x).(2-x)<=0
0 Xem trả lời
Hỏi chi tiết
53
Tham khảo câu trả lời từ Trợ lý ảo Lazi
To solve the inequality (x-1)(x-4) >= 0, we need to find the values of x that make the expression greater than or equal to zero.

First, let's find the critical points by setting the expression equal to zero:
(x-1)(x-4) = 0
x-1 = 0 or x-4 = 0
x = 1 or x = 4

Now, we can create a number line and test the intervals between the critical points and beyond:

Interval 1: (-∞, 1)
Choose a test point, such as x = 0:
(0-1)(0-4) = (-1)(-4) = 4 > 0
Since the expression is positive in this interval, it satisfies the inequality.

Interval 2: (1, 4)
Choose a test point, such as x = 2:
(2-1)(2-4) = (1)(-2) = -2 < 0
Since the expression is negative in this interval, it does not satisfy the inequality.

Interval 3: (4, ∞)
Choose a test point, such as x = 5:
(5-1)(5-4) = (4)(1) = 4 > 0
Since the expression is positive in this interval, it satisfies the inequality.

Therefore, the solution to (x-1)(x-4) >= 0 is x ∈ (-∞, 1] ∪ [4, ∞).

Now, let's solve the inequality (8-x)(2-x) <= 0:

First, let's find the critical points by setting the expression equal to zero:
(8-x)(2-x) = 0
8-x = 0 or 2-x = 0
x = 8 or x = 2

Now, we can create a number line and test the intervals between the critical points and beyond:

Interval 1: (-∞, 2)
Choose a test point, such as x = 0:
(8-0)(2-0) = (8)(2) = 16 > 0
Since the expression is positive in this interval, it does not satisfy the inequality.

Interval 2: (2, 8)
Choose a test point, such as x = 5:
(8-5)(2-5) = (3)(-3) = -9 < 0
Since the expression is negative in this interval, it satisfies the inequality.

Interval 3: (8, ∞)
Choose a test point, such as x = 9:
(8-9)(2-9) = (-1)(-7) = 7 > 0
Since the expression is positive in this interval, it does not satisfy the inequality.

Therefore, the solution to (8-x)(2-x) <= 0 is x ∈ (2, 8].

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×