Bài tập  /  Bài đang cần trả lời

Ho góc vuông iOy và hai điểm A. B trên tia Ox (điểm 4 nằm giữa điểm O và B)

----- Nội dung dịch tự động từ ảnh -----
Câu 3 (3,5 điểm). Cho góc vuông iOy và hai điểm A. B trên tia Ox (điểm 4 nằm giữa
điểm O và B). Điểm Af thay đổi trên tỉa Oy. Đường tròn (7) đường kính AB cắt tia MA,
MZ lần lượt tại điểm thứ hai là C, E. Tia OE cắt đường tròn (7) tại điểm thứ hai là F.
1) Chứng minh: 4 điểm O, A, E, M cùng thuộc một đường tròn
2) Chứng minh: FC LAB
3) Chứng minh: OEOF +BE BM=OB"
4) Xác định vị trí của điểm M để tứ giác OCFM là hình bình hành.
2 Xem trả lời
Hỏi chi tiết
54
1
0
Nguyen Mai Anh
13/07/2023 10:01:54
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Quỳnh Mai
13/07/2023 10:02:44
+4đ tặng

a) Ta thấy \(\widehat{AOM}=\widehat{AEM}=90^o\Rightarrow\) OAEM là tứ giác nội tiếp hay O, A, E, M cùng thuộc một đường tròn.

b) Do OAEM là tứ giác nội tiếp nên \(\widehat{AMO}=\widehat{AEO}\) (hai góc nội tiếp cùng chắn một cung)

Mà \(\widehat{AEO}=\widehat{ACF}\)(hai góc nội tiếp cùng chắn một cung)

Vì vậy nên \(\widehat{AMO}=\widehat{ACF}\) . Chúng lại ở vị trí so le trong nên CF // OM

Vậy OCFM là hình thang.

c) Câu này cô sửa lại đề. Theo cô phải là \(OE.OF+BE.BM=OB^2\) mới đúng.

Cô sẽ chứng minh theo đẳng thức đó.

Ta thấy ngay \(\Delta BEA\sim\Delta BOM\left(g-g\right)\Rightarrow\frac{BE}{BO}=\frac{BA}{BM}\Rightarrow BE.BM=OB.AB\)

Ta thấy rằng \(\widehat{BEF}+\widehat{BAF}=180^o=\widehat{OAF}+\widehat{BAF}\Rightarrow\widehat{BEF}=\widehat{OAF}\)

Vậy thì \(\Delta OAF\sim\Delta OEB\left(g-g\right)\Rightarrow\frac{OA}{OE}=\frac{OF}{OB}\Rightarrow OE.OF=OB.AO\)

Từ đó suy ra \(OE.OF+BE.BM=OB.AB+OB.AO=OB\left(BA+AO\right)=OB^2\)

Quỳnh Mai
chấm 10đ với ạ

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×