Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC. Gọi E F theo thứ tự là trung điểm của các cạnh AB, AC

Bài 10 :(thi kì 2) Cho tam giác ABC. Gọi E, F theo thứ tự là trung điểm của
các cạnh AB, AC. Trên tia đối của tia FB lấy điểm P sao cho PF = BF. Trên tia
đối của tia EC lấy điểm () sao cho QE =CE.
a) Chứng minh: AP = AQ
b) Chứng minh : Ba điểm P. A, Q thẳng hàng.
c) BQ // AC và CP // AC
d) Gọi PC [ QB là R. Chứng minh chu vi D D POR bằng hai lần chu vi
D ABC.
e) Ba đường thẳng AR, BP, CQ đồng quy.
3 Xem trả lời
Hỏi chi tiết
385
1
0
Ng Nhật Linhh
03/08/2023 14:04:23
+5đ tặng

a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ
c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng) 
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí số le trong nên
CP//AB
d) +) Vì AQ//BC,AP//BC
Theo tiên đề Ơ-clit
=> ba điểm Q,A,P thẳng hàng
+) Vì BC = AQ = AP nên BC = 1/2 QP
+) Vì AC = BQ(cmt); AC = BR(cmt)
nên AC = 1/2 QR
+) Vì theo đề cho ba điểm Q,B,R đã thằng hàng nên không cần chứng minh. ba điểm P,C,R cũng vậy.
+) Vì AB = CP(cmt); AB = RC(cmt) nên AB= 1/2 RP
=> chu vi ΔPQR là: 
PQ + QR + PR
= 1/2BC + 1/2AC + 1/2AB
= 1/2(AB + BC + AC)
= 1/2 chu vi ABC (đpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Phùng Minh Phương
03/08/2023 14:04:33
+4đ tặng
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ
c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng) 
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí số le trong nên
CP//AB
d) +) Vì AQ//BC,AP//BC
Theo tiên đề Ơ-clit
=> ba điểm Q,A,P thẳng hàng
+) Vì BC = AQ = AP nên BC = 1/2 QP
+) Vì AC = BQ(cmt); AC = BR(cmt)
nên AC = 1/2 QR
+) Vì theo đề cho ba điểm Q,B,R đã thằng hàng nên không cần chứng minh. ba điểm P,C,R cũng vậy.
+) Vì AB = CP(cmt); AB = RC(cmt) nên AB= 1/2 RP
=> chu vi ΔPQR là: 
PQ + QR + PR
= 1/2BC + 1/2AC + 1/2AB
= 1/2(AB + BC + AC)
= 1/2 chu vi ABC (đpcm)
e) Xét  ΔPQR có :
BQ = BR(cùng = AC)
CR = CP(cùng = AB)
AQ = AP(cmt) và Q, A, P thẳng hàng 
=> B,C và A lần lượt là trung điểm của QR, RP và PQ.
Gọi giao điểm của QC và BP là H
ΔPQR có QC, PB và RA là các đường trung tuyến giao nhau tại H
=> H là trọng tâm
Vậy 3 đường này đồng quy tại 1 điểm.
1
1

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×