Bài tập  /  Bài đang cần trả lời

Phân tích thành nhân tử

cứu
2 Xem trả lời
Hỏi chi tiết
77
1
0
NguyễnNhư
29/08/2023 15:10:15
+5đ tặng
a, x^2 - 9x + 14
= x^2 - 7x - 2x +14
= x(x -7) - 2(x -7)
= (x -7).(x -2)
b, x^4 - 2x^3 + x^2
= x^2(x^2 - 2x +1)
= x^2(x -1)^2
c, 2x^2 + 10x +8
= 2(x^2 + 5x + 4)
d, x^2 + 5x + 6
= x^2 +2x +3x + 6
= x(x +2) + 3(x +2)
= (x +2).(x+3)
e, x^2 - 5x - 14
= x^2 + 2x - 7x - 14
= x(x +2) - 7(x +2)
= (x +2).(x - 7)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Bao Minh
29/08/2023 15:25:42
+4đ tặng

( Tui viết x^2 hay x bình phương = x2 cho nhanh nhé )

a, x2 - 9x + 14 = x2 - 2x - 7x + 14 = x(x-2) - 7(x-2) = (x-7)(x-2)

b, x4 - 2x3 + x2 = x4 - x3 - x3 + x2 = x3(x-2) -x2(x-2) = (x3-x2)(x-2) 

c, 2x2 + 10x + 8 = 2x2 + 2x + 8x + 8 = 2x(x+1) + 8(x+1) = (2x+8)(x+1)

d, x2 + 5x + 6 = x2 + 2x + 3x + 6 = x(x+2) :+ 3(x+2) = (x+3) (x+2)

e, x2 - 5x - 14 = x2 + 2x - 7x - 14 = x(x+2) - 7(x+2) = (x-7)(x+2)

Phương pháp giải ( Bonus :> ) : VD : ax^2 + bx + c (tam thức bậc 2 ) Xét hệ số của 2 số đầu là a và c có ac = ? và tím ước của ac, xem trong ước của ac có cặp số nào có tổng = b không , nếu có thì tách thành 2 biến đó và đặt nhân tử chung

Giả dụ : x^2 + 5x + 6 thì ta có hệ số 2 số đầu cuối là 1 và 6 thì của 2 số này sẽ là 6 . Xét Ư(6) = { 1,6 ; -1,-6 ; 2,3 ; -2,-3 } . Trong các cặp số này có cặp 2 và 3 có tích là 6 . Vậy tách 5x thành 2 hạng tử có hệ số là 2 và 3 : 2x + 3x thì ta được x2 + 2x + 3x + 6 , và đặt nhân tử chung như trên :D

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×