Cho 1/a + 1/b + 1/c = 1/(a + b + c). Chứng minh rằng: 1/a^2019 + 1/b^2019 + C^2019 = 1/a^2019 + b^2019 + c^2019 Cho 1/a+1/b+1/c=1/a+b+c
CMR:1/a^2019+1/b^2019+C^2019=1/a^2019+b^2019+c^2019
Tham khảo câu trả lời từ Trợ lý ảo Lazi We can rewrite the given equation as: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$ Multiplying both sides by $abc(a+b+c)$, we get: $bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc$ Expanding, we have: $ab^2 + ac^2 + a^2b + a^2c + b^2c + bc^2 + abc + acb + bca = abc$ Rearranging terms, we get: $a^2b + a^2c + ab^2 + ac^2 + b^2c + bc^2 + 2abc = abc$ Subtracting $abc$ from both sides, we have: $a^2b + a^2c + ab^2 + ac^2 + b^2c + bc^2 + abc = 0$ Now, let's consider the expression $1/a^{2019} + 1/b^{2019} + 1/c^{2019} - 1/a^{2019} - 1/b^{2019} - 1/c^{2019}$. Using the formula for the difference of cubes, we can factor this expression as: $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)\left(\frac{1}{a^{2018}} - \frac{1}{b^{2018}}\right)\left(a^{2018} - b^{2018}\right)$ Since $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$, the first factor is equal to 1. Also, $a^{2018} - b^{2018}$ can be factored as $(a-b)(a^{2017} + a^{2016}b + \ldots + ab^{2016} + b^{2017})$. Therefore, the expression becomes: $\left(\frac{1}{a^{2018}} - \frac{1}{b^{2018}}\right)(a-b)(a^{2017} + a^{2016}b + \ldots + ab^{2016} + b^{2017})$ Since $a-b$ is a factor, we can cancel it out from both sides. This leaves us with: $\left(\frac{1}{a^{2018}} - \frac{1}{b^{2018}}\right)(a^{2017} + a^{2016}b + \ldots + ab^{2016} + b^{2017}) = 0$ Since $a^{2017} + a^{2016}b + \ldots + ab^{2016} + b^{2017}$ is a sum of terms, it cannot be equal to zero. Therefore, the only way for the expression to be equal to zero is if $\frac{1}{a^{2018}} - \frac{1}{b^{2018}} = 0$. This implies $\frac{1}{a^{2018}} = \frac{1}{b^{2018}}$, which means $a^{2018} = b^{2018}$. Similarly, we can show that $b^{2018} = c^{2018}$. Therefore, $a^{2018} = b^{2018} = c^{2018}$. Taking the 2019th power of both sides, we get: $a^{2018 \cdot 2019} = b^{2018 \cdot 2019} = c^{2018 \cdot 2019}$ Therefore, $a^{2019} = b^{2019} = c^{2019}$. Substituting this into the original equation, we have: $\frac{1}{a^{2019}} + \frac{1}{b^{2019}} + \frac{1}{c^{2019}} = \frac{1}{a^{2019}} + \frac{1}{b^{2019}} + \frac{1}{c^{2019}}$ Therefore, $1/a^{2019} + 1/b^{2019} + 1/c^{2019} = 1/a^{2019} + 1/b^{2019} + 1/c^{2019}$. Hence, the statement is true.