Bài tập  /  Bài đang cần trả lời

Giải phương trình sau

Giải phương trình sau
x^2-x+12
2 trả lời
Hỏi chi tiết
49
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình x^2 - x + 12 = 0, ta có thể sử dụng công thức nghiệm của phương trình bậc hai.

Công thức nghiệm của phương trình bậc hai có dạng: x = (-b ± √(b^2 - 4ac)) / (2a)

Trong đó, a, b, và c lần lượt là các hệ số của phương trình.

Áp dụng vào phương trình x^2 - x + 12 = 0, ta có:
a = 1, b = -1, c = 12

x = (-(-1) ± √((-1)^2 - 4(1)(12))) / (2(1))
= (1 ± √(1 - 48)) / 2
= (1 ± √(-47)) / 2

Vì căn bậc hai của một số âm không tồn tại trong tập số thực, nên phương trình không có nghiệm thực.
2
0
Nguyễn Văn Minh
06/11/2023 19:03:10
+5đ tặng
denta = b^2-4ac= (-1)^2-4.1.12 <0 
Nên phương trình vô nghiệm

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Nguyễn Quỳnh Anh
06/11/2023 19:05:37
+4đ tặng
Ta có denta=(-1)^2-4.12=1-48=-47
vì denta<0 nên pt vô nghiệm
Nguyễn Quỳnh Anh
Chấm và like nhé

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư