Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm x; y; z

4/x-3=8/y-6=20/7-15 và xyz=640
 
0 Xem trả lời
Hỏi chi tiết
47
Tham khảo câu trả lời từ Trợ lý ảo Lazi
To solve this problem, we can start by simplifying the given equations.

From the first equation, 4/x - 3 = 8/y - 6, we can add 3 to both sides to isolate the first fraction:

4/x = 8/y - 3

Next, we can find a common denominator for the fractions on the right side:

4/x = (8 - 3y)/y

To eliminate the fractions, we can cross-multiply:

4y = xy(8 - 3y)

Expanding the right side:

4y = 8xy - 3xy^2

Rearranging the equation:

3xy^2 - 8xy + 4y = 0

Now let's look at the second equation, 8/y - 6 = 20/7 - 15. We can simplify this equation by finding a common denominator:

8/y = (20 - 15y)/7

Cross-multiplying:

8y = 7(20 - 15y)

Expanding the right side:

8y = 140 - 105y

Rearranging the equation:

105y^2 - 8y + 140 = 0

Finally, we have the equation xyz = 640.

Now we have a system of three equations:

3xy^2 - 8xy + 4y = 0
105y^2 - 8y + 140 = 0
xyz = 640

To solve this system, we can use substitution or elimination methods. However, since the equations involve variables in different terms, substitution may be more complicated. Therefore, we will use the elimination method.

First, let's solve the second equation for y:

105y^2 - 8y + 140 = 0

Using the quadratic formula, we find:

y = (-(-8) ± √((-8)^2 - 4(105)(140))) / (2(105))

Simplifying:

y = (8 ± √(64 + 58800)) / 210

y = (8 ± √58864) / 210

y = (8 ± 242) / 210

y = (8 + 242) / 210 or y = (8 - 242) / 210

y = 250 / 210 or y = -234 / 210

Simplifying:

y = 5/3 or y = -13/3

Now let's substitute these values of y back into the first equation:

3xy^2 - 8xy + 4y = 0

For y = 5/3:

3x(5/3)^2 - 8x(5/3) + 4(5/3) = 0

Simplifying:

25x/3 - 40x/3 + 20/3 = 0

-15x/3 + 20/3 = 0

-5x + 20 = 0

-5x = -20

x = 4

For y = -13/3:

3x(-13/3)^2 - 8x(-13/3) + 4(-13/3) = 0

Simplifying:

169x/3 + 104x/3 - 52/3 = 0

273x/3 - 52/3 = 0

91x - 52 = 0

91x = 52

x = 52/91

Therefore, the solutions to the system of equations are:

x = 4, y = 5/3
x = 52/91, y = -13/3

To find z, we can substitute these values of x and y into the third equation:

xyz = 640

For x = 4 and y = 5/3:

4(5/3)z = 640

20z/3 = 640

20z = 1920

z = 1920/20

z = 96

For x = 52/91 and y = -13/3:

(52/91)(-13/3)z = 640

-676z/273 = 640

-676z = 640(273)

z = 640(273)/-676

z = -27360/676

Therefore, the solutions to the system of equations are:

x = 4, y = 5/3, z = 96
x = 52/91, y = -13/3, z = -27360/676

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×