(15 + 5x^2 - 3x^3 - 9x ) : ( 5 - 3x ) Tham khảo câu trả lời từ Trợ lý ảo Lazi To divide the polynomial (15 + 5x^2 - 3x^3 - 9x) by (5 - 3x), we can use long division. First, we divide the highest degree term of the dividend by the highest degree term of the divisor. In this case, it is (-3x^3) divided by (-3x), which gives us x^2. x^2 _________________________ 5 - 3x | -3x^3 + 5x^2 - 9x + 15 Next, we multiply the divisor (5 - 3x) by the quotient (x^2) and subtract it from the dividend. x^2 _________________________ 5 - 3x | -3x^3 + 5x^2 - 9x + 15 -(-3x^3 + 3x^2) _______________ 2x^2 - 9x Now, we bring down the next term (-9x) and repeat the process. x^2 + 2x _________________________ 5 - 3x | -3x^3 + 5x^2 - 9x + 15 -(-3x^3 + 3x^2) _______________ 2x^2 - 9x -(2x^2 - 6x) __________ -3x + 15 Finally, we bring down the last term (15) and divide it by the divisor. x^2 + 2x - 3 _________________________ 5 - 3x | -3x^3 + 5x^2 - 9x + 15 -(-3x^3 + 3x^2) _______________ 2x^2 - 9x -(2x^2 - 6x) __________ -3x + 15 -(-3x + 9) __________ 6 Therefore, the result of the division is x^2 + 2x - 3 with a remainder of 6.