Cho tam giac ABC voi AB= c, AC= b, BC= a.Chung minh rang sin A/2 < hoac = a/(2 can bc)
0 Xem trả lời
50 Tham khảo câu trả lời từ Trợ lý ảo Lazi Ta có tam giác ABC với AB = c, AC = b, BC = a. Áp dụng định lý cosin trong tam giác ABC, ta có: cos A = (b^2 + c^2 - a^2) / (2bc) Áp dụng công thức sin^2 A + cos^2 A = 1, ta có: sin^2 A = 1 - cos^2 A = 1 - [(b^2 + c^2 - a^2) / (2bc)]^2 = 1 - (b^4 + c^4 + a^4 - 2b^2c^2 - 2c^2a^2 + 2a^2b^2) / (4b^2c^2) = (4b^2c^2 - b^4 - c^4 - a^4 + 2b^2c^2 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2) = (2b^2c^2 - b^4 - c^4 - a^4 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - a^4 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - c^2)(a^2 + c^2 - 2b^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - c^2)(a^2 - b^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2) = (2b^2c^2 - (b^2 - c^2)^2 - (a^2 -