Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Chứng minh

Cho tam giac ABC voi AB= c, AC= b, BC= a.Chung minh rang sin A/2 < hoac = a/(2 can bc)
0 Xem trả lời
Hỏi chi tiết
50
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Ta có tam giác ABC với AB = c, AC = b, BC = a.

Áp dụng định lý cosin trong tam giác ABC, ta có:
cos A = (b^2 + c^2 - a^2) / (2bc)

Áp dụng công thức sin^2 A + cos^2 A = 1, ta có:
sin^2 A = 1 - cos^2 A
= 1 - [(b^2 + c^2 - a^2) / (2bc)]^2
= 1 - (b^4 + c^4 + a^4 - 2b^2c^2 - 2c^2a^2 + 2a^2b^2) / (4b^2c^2)
= (4b^2c^2 - b^4 - c^4 - a^4 + 2b^2c^2 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2)
= (2b^2c^2 - b^4 - c^4 - a^4 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - a^4 + 2c^2a^2 - 2a^2b^2) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - c^2)(a^2 + c^2 - 2b^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - c^2)(a^2 - b^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 - b^2)(a^2 - c^2)) / (4b^2c^2)
= (2b^2c^2 - (b^2 - c^2)^2 - (a^2 -

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×