Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trên tia AD lấy điểm E sao cho ^BEA = ^BCA.
Khi đó ^BED = ^ACD và ^BDE = ^ADC nên hai tam giác BDE và ADC đồng dạng
=> BD/AD = DE/DC
=> AD.DE = DB.DC (1).
Gọi F là điểm đối xứng với C qua đường thẳng AD
vì AD là phân giác ^BAC nên F thuộc AB,
từ tính chất đối xứng suy ra ^DFA = ^DCA và AF = AC,
vì ^DCA = ^BCA = ^BEA nên ^DFA = ^BEA,
cùng với ^A chung nên hai tam giác DFA và BEA đồng dạng,
=> AD/AB = AF/AE = AC/AE, suy ra AD.AE = AB.AC (2).
Từ (2) và (1) theo vế thì có AD.(AE - DE) = AB.AC - DB.DC, suy ra AD^2 = AB.AC - DB.DC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |