Trong tam giác nhọn \(ABC\) có góc \(B = 60^\circ\), ta có:
\[AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos{B}\]
Với \(AC = 6 + 2\sqrt{3}\) cm và \(BC = 4\sqrt{3}\) cm, ya có:
\[AB^2 = (6 + 2\sqrt{3})^2 + (4\sqrt{3})^2 - 2 \cdot (6 + 2\sqrt{3}) \cdot (4\sqrt{3}) \cdot \cos{60^\circ}\]
\[AB^2 = (6 + 2\sqrt{3})^2 + (4\sqrt{3})^2 - 2 \cdot (6 + 2\sqrt{3}) \cdot (4\sqrt{3}) \cdot \frac{1}{2}\]
\[AB^2 = (6 + 2\sqrt{3})^2 + (4\sqrt{3})^2 - (6 + 2\sqrt{3}) \cdot (4\sqrt{3})\]
\[AB^2 = (6 + 2\sqrt{3})^2 + (4\sqrt{3})^2 - (24 + 24)\]
\[AB^2 = (6^2 + 2\cdot 6 \cdot 2\sqrt{3} + (2\sqrt{3})^2) + (4\sqrt{3})^2 - 48\]
\[AB^2 = (36 + 24\sqrt{3} + 12) + 48 - 48\]
\[AB^2 = 48 + 24\sqrt{3}\]
\[AB = \sqrt{48 + 24\sqrt{3}}\]
\[AB = \sqrt{24(2 + \sqrt{3})}\]
\[AB = \sqrt{24} \cdot \sqrt{2 + \sqrt{3}}\]
\[AB = 2\sqrt{6} \cdot \sqrt{2 + \sqrt{3}}\]