1/ rut gon A=2/√5-2-2/√5+2 B=(√x-1/√x):(√x-1/√x+1-√x/x+√x) (x>0,xkhac1) 2/ x^2-(m+5)x-m+6=0 a/ giai pt khi m=1 b/ tim cac gia tri cua m de pt co 2 nghiem x1,x2 thoa man x1^2x2+x1x2^2=24 3/ mot phong hop co 360 cho ngoi va duoc chia thanh cac day co so cho ngoi bang nhau neu them cho moi day 4 cho ngoi va bot di 3 day thi so cho ngoi trong phong khong thay doi hoi ban day so cho ngoi trong phong hop duoc chia thanh bao nhieu day?
1 trả lời
39 Tham khảo câu trả lời từ Trợ lý ảo Lazi 1/ a) A = 2/√5 - 2 - 2/√5 + 2 = (2 - 2√5 - 2 + 2√5) / (√5 - 2)(√5 + 2) = 0 / 1 = 0 b) B = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√x + 1 - √x/x + √x) = (√x - 1/√x) : (√x - 1/√