Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho đường tròn tâm O đường kính BC. Lấy điểm A trên đường tròn (A khác B, C). Trên OC lấy D. Từ D vẽ đường thẳng vuông góc với BC cắt đường tròn (O) tại I, K và cắt BA, AC tại E, F

Cho đường tròn tâm O đường kính BC. Lấy điểm A trên đường tròn (A khác B, C). Trên OC lấy D. Từ D vẽ đường thẳng vuông góc với BC cắt đường tròn (O) tại I, K và cắt BA, AC tại E, F. Đường thẳng CE cắt đường tròn (O) tại J.
a. Chứng minh B, F, J thẳng hàng.
b. Chứng minh ABCJ, AEJF nội tiếp.
c. Chứng minh FA . FC = FE . FD.
d. Tiếp tuyến tại A của đường tròn cắt EF tại M. Chứng minh M là trung điểm của EF.
Giúp mình câu d với. mình đang cần gấp. minh cho 5 sao
0 Xem trả lời
Hỏi chi tiết
88
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh M là trung điểm của EF, ta cần chứng minh rằng tam giác EMA đồng dạng với tam giác FMC.

Ta có:
- Góc EAI = góc EKI (do AI vuông góc BC và AK vuông góc BC)
- Góc FCI = góc FDI (do CI vuông góc BC và CK vuông góc BC)
- Góc EAI = góc FCI (cùng là góc ngoại tiếp của tứ giác AEIJ)
- Góc EKI = góc FDI (cùng là góc ngoại tiếp của tứ giác EKID)

Do đó, ta có tam giác EAI đồng dạng với tam giác FCI (có 2 góc bằng nhau), từ đó suy ra tam giác EMA đồng dạng với tam giác FMC.

Vậy M là trung điểm của EF.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×