Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho a, b dương thoả mãn a - b = a / b. Chứng minh rằng: (ab/(a + b)) × (1/(a + b) + 1/(ab - a - b)) + 1/(ab - a - b) >= 9/ab

Cho a,b dương thoả mãn a-b=a/b. CMR: (ab/(a+b))×(1/(a+b) +1/(ab-a-b)) + 1/(ab-a-b) >= 9/ab
0 Xem trả lời
Hỏi chi tiết
104
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Bài toán yêu cầu chứng minh bất đẳng thức:

\[\frac{ab}{a+b} \cdot \left(\frac{1}{a+b} + \frac{1}{ab-a-b}\right) + \frac{1}{ab-a-b} \geq \frac{9}{ab}\]

Đặt \(x = a+b\), ta có \(a = x - b\).

Thay \(a = x - b\) vào \(a - b = \frac{a}{b}\), ta được:

\(x - 2b = \frac{x - b}{b}\)

\(x - 2b = \frac{x}{b} - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x + b^2 - b}{b}\)

\(x = \frac{x + b^2 - b}{b}\)

\(x = \frac{x + b(b - 1)}{b}\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x = \frac{x}{b} + b - 1\)

\(x

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×