Cho nửa đường tròn tâm O đường kính AB = 2R. D là 1 điểm tuỳ ý trên nửa đường tròn (D khác A và D khác B). Các tiếp tuyến với nửa đường tròn (O) tại A và D cắt nhau ở C, BC cắt nửa đường tròn (O) tại điểm thứ hai là E. Kẻ DF vuông góc với AB tại F.
a) Chứng minh: Tứ giác OACD nội tiếp.
b) Chứng minh: CD^2 = CE.CB
c) Chứng minh: Đường thẳng BC đi qua trung điểm của DF.
chi tiết giúp tớ chút ^-^!
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp
b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)
\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)
c) BC cắt DF tại G.BD cắt AC tại H
Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D
có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH
Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)
mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcm
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |