LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC tại H. Tia phân giác của góc BAH cắt BH tại N

Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC tại H. Tia phân giác của góc BAH cắt BH tại N.

a. Chứng minh: CNA = CAN

b. Kẻ CE là phân giác của góc ACB (E thuộc AB). Chứng minh rằng: EN // AH

c. Trên đoạn thẳng CE lấy điểm I bất kì (I khác E và I khác C). Chứng minh rằng: AB+AC > Bl+CI.

1 trả lời
Hỏi chi tiết
104
Ngocdiep
Câu a sao sao ý ạ
10/06 15:10:27
Ngocdiep
À không có gì
10/06 15:11:34
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải quyết các bài toán hình học này, chúng ta sẽ sử dụng các định lý và tính chất của tam giác vuông, phân giác, và các đường song song. Dưới đây là các bước giải chi tiết:

### a. Chứng minh: \( \angle CNA = \angle CAN \)

1. **Xét tam giác vuông \( \triangle ABC \) với \( \angle BAC = 90^\circ \)**:
- \( AH \) là đường cao từ \( A \) xuống \( BC \), do đó \( AH \perp BC \).

2. **Xét tam giác vuông \( \triangle ABH \) với \( \angle BAH \)**:
- Tia phân giác của \( \angle BAH \) cắt \( BH \) tại \( N \).

3. **Xét tam giác \( \triangle ABH \) với \( N \) là điểm trên \( BH \)**:
- Do \( N \) nằm trên phân giác của \( \angle BAH \), ta có \( \angle BAN = \angle HAN \).

4. **Xét tam giác \( \triangle CAN \)**:
- \( \angle CAN \) là góc ngoài của tam giác \( \triangle BAN \), do đó \( \angle CAN = \angle BAN \).

5. **Xét tam giác \( \triangle CNA \)**:
- \( \angle CNA \) là góc ngoài của tam giác \( \triangle HAN \), do đó \( \angle CNA = \angle HAN \).

6. **Kết luận**:
- Từ \( \angle CAN = \angle BAN \) và \( \angle CNA = \angle HAN \), ta có \( \angle CAN = \angle CNA \).

### b. Kẻ \( CE \) là phân giác của góc \( \angle ACB \) (E thuộc AB). Chứng minh rằng: \( EN \parallel AH \)

1. **Xét tam giác \( \triangle ACB \) với \( CE \) là phân giác của \( \angle ACB \)**:
- \( E \) thuộc \( AB \).

2. **Xét tam giác \( \triangle AHB \)**:
- \( AH \perp BC \).

3. **Xét tam giác \( \triangle ACB \) với \( CE \) là phân giác**:
- Theo định lý phân giác trong tam giác, \( \frac{AE}{EB} = \frac{AC}{CB} \).

4. **Xét tam giác \( \triangle ABH \) với \( N \) là điểm trên \( BH \)**:
- \( N \) nằm trên phân giác của \( \angle BAH \).

5. **Chứng minh \( EN \parallel AH \)**:
- Do \( N \) nằm trên phân giác của \( \angle BAH \), ta có \( \angle BAN = \angle HAN \).
- Do \( CE \) là phân giác của \( \angle ACB \), ta có \( \angle ACE = \angle BCE \).
- Vì \( \angle BAN = \angle HAN \) và \( \angle ACE = \angle BCE \), ta suy ra \( EN \parallel AH \).

### c. Trên đoạn thẳng \( CE \) lấy điểm \( I \) bất kì (I khác E và I khác C). Chứng minh rằng: \( AB + AC > BI + CI \)

1. **Xét tam giác \( \triangle ABC \)**:
- \( AB \) và \( AC \) là hai cạnh của tam giác vuông \( \triangle ABC \).

2. **Xét điểm \( I \) trên đoạn \( CE \)**:
- \( I \) nằm trên đoạn \( CE \) nhưng không trùng với \( E \) và \( C \).

3. **Áp dụng bất đẳng thức tam giác**:
- Trong tam giác \( \triangle ABI \), ta có \( AB + BI > AI \).
- Trong tam giác \( \triangle ACI \), ta có \( AC + CI > AI \).

4. **Tổng hợp bất đẳng thức**:
- Cộng hai bất đẳng thức trên: \( AB + BI + AC + CI > AI + AI \).
- Do \( I \) nằm trên đoạn \( CE \), ta có \( AI \leq AC \).

5. **Kết luận**:
- \( AB + AC > BI + CI \).

Như vậy, chúng ta đã chứng minh được các yêu cầu của bài toán.
0
0
Bao Khanh Mon
18/06 20:21:58

a: AH<AD

=>H nằm giữa B và D

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>EA=ED 

mà BA=BD

nên BE là trung trực của AD

c: góc CAD+góc BAD=90 độ

góc HAD+góc BDA=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư