Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho a = 2+22+222+2222+..+222...222(có 1015 chữ số 2 trong số 222.222). Tìm chữ số hàng chục của kết quả của phép tính trên

cho a = 2+22+222+2222+..+222...222(có 1015 chữ số 2 trong số 222.222) Tìm chữ số hàng chục của kết quả của phép tính trên
 
0 trả lời
Hỏi chi tiết
113
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm chữ số hàng chục của tổng \( a = 2 + 22 + 222 + 2222 + \ldots + \underbrace{222\ldots222}_{1015 \text{ chữ số 2}} \), ta cần phân tích tổng này một cách chi tiết hơn.

Trước hết, ta nhận thấy rằng mỗi số trong dãy có thể được biểu diễn dưới dạng:
\[ 2, 22, 222, 2222, \ldots, \underbrace{222\ldots222}_{1015 \text{ chữ số 2}} \]

Mỗi số trong dãy này có thể được viết dưới dạng:
\[ 2 \times \frac{10^k - 1}{9} \]
với \( k \) là số chữ số 2 trong số đó.

Do đó, tổng \( a \) có thể được viết lại như sau:
\[ a = \sum_{k=1}^{1015} 2 \times \frac{10^k - 1}{9} \]

Chúng ta có thể tách tổng này thành hai phần:
\[ a = \frac{2}{9} \sum_{k=1}^{1015} (10^k - 1) \]
\[ a = \frac{2}{9} \left( \sum_{k=1}^{1015} 10^k - \sum_{k=1}^{1015} 1 \right) \]

Tổng của các lũy thừa của 10 từ \( 10^1 \) đến \( 10^{1015} \) là một cấp số nhân:
\[ \sum_{k=1}^{1015} 10^k = 10 + 10^2 + 10^3 + \ldots + 10^{1015} = 10 \left( \frac{10^{1015} - 1}{10 - 1} \right) = \frac{10^{1016} - 10}{9} \]

Tổng của 1015 số 1 là:
\[ \sum_{k=1}^{1015} 1 = 1015 \]

Do đó:
\[ a = \frac{2}{9} \left( \frac{10^{1016} - 10}{9} - 1015 \right) \]
\[ a = \frac{2}{9} \left( \frac{10^{1016} - 10 - 91435}{9} \right) \]
\[ a = \frac{2}{81} (10^{1016} - 91445) \]

Để tìm chữ số hàng chục của \( a \), chúng ta chỉ cần quan tâm đến hai chữ số cuối của \( 10^{1016} \) và \( 91445 \).

Chúng ta biết rằng \( 10^{1016} \) có dạng \( 1 \) theo sau là 1016 chữ số 0, do đó hai chữ số cuối của \( 10^{1016} \) là \( 00 \).

Do đó, chúng ta cần tính:
\[ 10^{1016} - 91445 \]
Hai chữ số cuối của \( 91445 \) là \( 45 \), do đó:
\[ 00 - 45 = -45 \]

Khi chuyển đổi sang dạng dương, ta có:
\[ -45 \equiv 55 \ (\text{mod}\ 100) \]

Do đó, hai chữ số cuối của \( 10^{1016} - 91445 \) là \( 55 \). Khi nhân với \( \frac{2}{81} \), ta chỉ cần quan tâm đến hai chữ số cuối của \( 55 \times 2 \):
\[ 55 \times 2 = 110 \]

Vậy, chữ số hàng chục của kết quả là \( 1 \).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 5 mới nhất
Trắc nghiệm Toán học Lớp 5 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư