LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Một kim tự tháp ai cập có dạng hình chóp tứ giác đều, các mặt bên là các tam giác đều có cạnh bằng 180 mét, tính diện tích xung quanh và thể tích

một  kimtự tháp ai cập cs dạng hình chóp tứ giác đều các mặt bên là các tam giác đều có cạnh bằng 180 mét. tính diện tích xung quanh và thể tích
0 trả lời
Hỏi chi tiết
52
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tính diện tích xung quanh và thể tích của một kim tự tháp Ai Cập có dạng hình chóp tứ giác đều với các mặt bên là các tam giác đều có cạnh bằng 180 mét, ta cần thực hiện các bước sau:

### 1. Diện tích xung quanh

Diện tích xung quanh của kim tự tháp là tổng diện tích của 4 mặt tam giác đều.

Diện tích của một tam giác đều cạnh \(a\) là:
\[ A = \frac{\sqrt{3}}{4} a^2 \]

Với \(a = 180\) mét, diện tích của một tam giác đều là:
\[ A = \frac{\sqrt{3}}{4} \times 180^2 \]
\[ A = \frac{\sqrt{3}}{4} \times 32400 \]
\[ A = 8100\sqrt{3} \, \text{m}^2 \]

Vì kim tự tháp có 4 mặt tam giác đều, diện tích xung quanh là:
\[ A_{\text{xung quanh}} = 4 \times 8100\sqrt{3} \]
\[ A_{\text{xung quanh}} = 32400\sqrt{3} \, \text{m}^2 \]

### 2. Thể tích

Để tính thể tích của kim tự tháp, ta cần biết chiều cao của nó. Trước hết, ta tính chiều cao của một mặt tam giác đều.

Chiều cao \(h_{\text{tam giác}}\) của một tam giác đều cạnh \(a\) là:
\[ h_{\text{tam giác}} = \frac{\sqrt{3}}{2} a \]

Với \(a = 180\) mét, chiều cao của tam giác đều là:
\[ h_{\text{tam giác}} = \frac{\sqrt{3}}{2} \times 180 \]
\[ h_{\text{tam giác}} = 90\sqrt{3} \, \text{m} \]

Tiếp theo, ta tính chiều cao \(h_{\text{kim tự tháp}}\) của kim tự tháp. Chiều cao này là đoạn thẳng từ đỉnh kim tự tháp vuông góc với mặt đáy. Để tính chiều cao này, ta cần biết chiều cao của tam giác vuông tạo bởi chiều cao của tam giác đều và đường trung trực của mặt đáy.

Đường trung trực của mặt đáy (hình vuông) là:
\[ \frac{a\sqrt{2}}{2} = \frac{180\sqrt{2}}{2} = 90\sqrt{2} \, \text{m} \]

Chiều cao của kim tự tháp là:
\[ h_{\text{kim tự tháp}} = \sqrt{(h_{\text{tam giác}})^2 - \left(\frac{a\sqrt{2}}{2}\right)^2} \]
\[ h_{\text{kim tự tháp}} = \sqrt{(90\sqrt{3})^2 - (90\sqrt{2})^2} \]
\[ h_{\text{kim tự tháp}} = \sqrt{24300 - 16200} \]
\[ h_{\text{kim tự tháp}} = \sqrt{8100} \]
\[ h_{\text{kim tự tháp}} = 90 \, \text{m} \]

Cuối cùng, thể tích \(V\) của kim tự tháp là:
\[ V = \frac{1}{3} \times \text{diện tích đáy} \times \text{chiều cao} \]

Diện tích đáy (hình vuông) là:
\[ A_{\text{đáy}} = a^2 = 180^2 = 32400 \, \text{m}^2 \]

Thể tích kim tự tháp là:
\[ V = \frac{1}{3} \times 32400 \times 90 \]
\[ V = \frac{1}{3} \times 2916000 \]
\[ V = 972000 \, \text{m}^3 \]

### Kết quả

- Diện tích xung quanh: \( 32400\sqrt{3} \, \text{m}^2 \)
- Thể tích: \( 972000 \, \text{m}^3 \)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư