----- Nội dung dịch tự động từ ảnh ----- 56 14 2+x d) 3x-12 = 3 x-4 8-2x
2 Xem trả lời
72 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để giải phương trình này, ta cần tìm giá trị của \( x \) sao cho phương trình sau đúng: \[ \frac{14}{3x-12} - \frac{2+x}{x-4} = \frac{3}{8-2x} - \frac{5}{6} \] Bước 1: Đơn giản hóa các mẫu số để dễ dàng làm việc với phương trình. \[ 3x - 12 = 3(x - 4) \] \[ 8 - 2x = 2(4 - x) \] Bước 2: Đưa tất cả các phân số về cùng mẫu số chung. \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] Bước 3: Tìm mẫu số chung cho các phân số. \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] Mẫu số chung của vế trái là \( 3(x-4) \) và của vế phải là \( 6(4-x) \). Bước 4: Quy đồng mẫu số và giải phương trình. \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \frac{3}{2(4-x)} - \frac{5}{6} \] \[ \frac{14}{3(x-4)} - \frac{2+x}{x-4} = \