Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Factoring polynomials? Find x and know?

Giúp mik vs
 
----- Nội dung dịch tự động từ ảnh -----
HSG TEAM TEST TOPIC ANALYSIS OF RHTTT
SUBJECT: ENGLISH MATH 8 (TOPIC 2)
(Duration 90 minutes)

Lesson 1 (2.0 points). Factoring polynomials.
a) \( 4x^2 - y^2 + 4x + 1 \)
b) \( x^5 - x^4 - 1 \)
c) \( x(x + 4)(x + 10) + 128 \)
d) \( (x - y)^2 + (y - z)^3 + (z - x)^3 \)

Lesson 2 (2.0 points). Find x and know.
a) \( x^4 + 5x^3 - 8x - 40 = 0 \)
b) \( 9(5 - x) + x^2 - 10x = -25 \)

Lesson 3 (2.0 points).
a) Find the maximum value of the expression: \( A = -4x^2 + x - 1 \)
b) Find the minimum value of the expression: \( B = 2x^2 + 4x + 7 \)

Lesson 4 (2.0 points).
a) Prove that: \( -4n^ - 4n^{2} + 16n \) is divisible by 384 for all even n greater than 4.
b) Find pairs of integers \( (x, y) \) that satisfy the equality: \( y^2 - 3x - 6 = 0 \)

Lesson 5 (2.0 points).
a) Given three numbers \( a, b, c \) satisfying \( a + b + c = 1 \) and \( a^2 + b^3 + c^3 = 1 \). Prove that:
\( a^{2015} + b^{2015} + c^{2015} = 1 \)
b) Let \( a, b, c \) be positive numbers satisfying: \( ab + bc + ac = 1 \). Prove that:
\[
\frac{a}{1 + a^2} + \frac{b}{1 + b^2} = \frac{1 + ab}{\sqrt{(1 + a^2)(1 + b^2)(1 + c^2)}}
\]

----------- The end -------
0 Xem trả lời
Hỏi chi tiết
43
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Let's solve the problems in the provided document step-by-step.

### Lesson 1: Factoring Polynomials

**a)** \(4x^2 - y^2 + 4x + 1\)

To factor this expression, we rearrange it as a quadratic in \(x\):

\[
4x^2 + 4x + (1 - y^2)
\]

This can be factored using the quadratic formula or by completing the square, leading to:

\[
4(x + 1)^2 - y^2
\]

This is a difference of squares:

\[
(2(x + 1) - y)(2(x + 1) + y)
\]

**b)** \(x^5 - x^4 - 1\)

Factoring polynomials of degree 5 can be complex. A potential rational root can be tested, but a numerical approach may be necessary to find specific roots.

**c)** \(x(x + 4)(x + 6) + 128\)

Expanding this gives:

\[
x^3 + 10x^2 + 24x + 128
\]

Finding roots might involve the Rational Root Theorem or numerical methods.

**d)** \(y^2 + (y - z)^2 + (z - x)^3\)

This expression requires expansion and might simplify to a specific polynomial form.

### Lesson 2: Find x and know

#### a) \(x^2 + 5x - 8x - 40 = 0\)

This simplifies to:

\[
x^2 - 3x - 40 = 0
\]

Factoring or using the quadratic formula gives:

\[
x = 8 \quad \text{and} \quad x = -5
\]

#### b) \(9(5 - x) + x^2 - 10x = -25\)

Expanding gives:

\[
45 - 9x + x^2 - 10x = -25
\]

Rearranging results in:

\[
x^2 - 19x + 70 = 0
\]

Factoring gives:

\[
(x - 14)(x - 5) = 0 \Rightarrow x = 14 \quad \text{or} \quad x = 5
\]

### Subsequent Lessons

Lesson 3 involves finding maximum and minimum values, requiring calculus or algebraic manipulation.

Lesson 4 requires proof about divisibility and solving integer conditions, which can involve theoretical number concepts.

Lesson 5 focuses on inequalities and assumptions about positive real numbers.

If you have specific questions about any particular problem or need further assistance, please let me know!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×