Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Giải phương trình: tan (π/4 + x/2)   (1 + cos(π/2 +x) / sin (π/2 + x) = 1

 Bắt đầu với việc giải thức (1 + \cos(\alpha)):
Giải : tan (π/4 + x/2)   (1 + cos(π/2 +x) / sin (π/2 + x) = 1
0 Xem trả lời
Hỏi chi tiết
348
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình:

\[
\tan \left(\frac{\pi}{4} + \frac{x}{2}\right) \left(1 + \frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)}\right) = 1
\]

Đầu tiên, chúng ta có thể giản lược biểu thức trong ngoặc bằng cách sử dụng các tính chất của hàm lượng giác. Theo công thức, ta biết rằng:

\[
\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)
\]
\[
\sin\left(\frac{\pi}{2} + x\right) = \cos(x)
\]

Từ đó, ta có:

\[
\frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)} = \frac{-\sin(x)}{\cos(x)} = -\tan(x)
\]

Thay vào phương trình, ta có:

\[
\tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \left(1 - \tan(x)\right) = 1
\]

Tiếp theo, ta biết rằng:

\[
\tan\left(\frac{\pi}{4} + u\right) = \frac{1 + \tan(u)}{1 - \tan(u)}
\]

Khi \(u = \frac{x}{2}\), ta có:

\[
\tan\left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)}
\]

Thay vào biểu thức trên:

\[
\frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)} \left(1 - \tan(x)\right) = 1
\]

Tiếp theo, tiến hành nhân chéo để loại bỏ mẫu:

\[
(1 + \tan\left(\frac{x}{2}\right))(1 - \tan(x)) = 1 - \tan\left(\frac{x}{2}\right)
\]

Giờ ta sẽ giải tiếp phương trình trên để tìm giá trị \(x\).

Điều này có thể phức tạp hơn phụ thuộc vào các giá trị cụ thể, vì vậy từ đây, ta có thể tiếp tục giải bằng cách đưa về dạng sáng hơn hoặc sử dụng các phương pháp số để tìm nghiệm. Một cách đơn giản hơn có thể là thử các giá trị cụ thể cho \(x\) để kiểm tra xem có phương trình nào thỏa mãn không.

Cụ thể hơn, ta có thể thử một vài giá trị cho \(x\) để tìm nghiệm.

Nếu có thêm điều kiện hoặc yêu cầu nào khác, bạn có thể cho biết để tôi giúp đỡ thêm nhé!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×