Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Hỏi tàu cách đường thẳng AB bao nhiêu mét

0 trả lời
Hỏi chi tiết
16
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm khoảng cách từ tàu đến đường thẳng AB, chúng ta có thể sử dụng kiến thức hình học về tam giác.

Chúng ta có:

- Đoạn AB = 2 km = 2000 m
- Góc CAB = 50°
- Góc CBA = 45°

Đầu tiên, chúng ta có thể tính góc C:

\[
\angle ACB = 180° - \angle CAB - \angle CBA = 180° - 50° - 45° = 85°
\]

Bây giờ, chúng ta sẽ sử dụng công thức trong tam giác để tìm chiều cao từ điểm C xuống đường thẳng AB, tức khoảng cách từ tàu đến đường thẳng AB.

Ta có thể áp dụng định lý sin:

\[
\frac{AB}{\sin(C)} = \frac{AC}{\sin(B)}
\]

**Bước 1: Tính AC và BC**

Áp dụng định lý sin cho AC:

\[
\frac{AC}{\sin(45°)} = \frac{2000}{\sin(85°)}
\]

Từ đó ta có:

\[
AC = \frac{2000 \cdot \sin(45°)}{\sin(85°)}
\]

Tương tự cho BC:

\[
\frac{BC}{\sin(50°)} = \frac{2000}{\sin(85°)}
\]

Ta tìm được:

\[
BC = \frac{2000 \cdot \sin(50°)}{\sin(85°)}
\]

**Bước 2: Tính khoảng cách từ C đến AB**

Ta sẽ sử dụng công thức diện tích của tam giác ABC để tính khoảng cách h từ điểm C đến đường thẳng AB:

Diện tích S của tam giác là:

\[
S = \frac{1}{2} \cdot AB \cdot h
\]

Mà diện tích cũng có thể tính bằng:

\[
S = \frac{1}{2} \cdot AC \cdot BC \cdot \sin(C)
\]

Từ đó, khi đặt hai cách tính diện tích bằng nhau và giải cho h, bạn sẽ tìm được khoảng cách từ tàu đến đường thẳng AB.

Tóm lại, bạn sẽ cần thực hiện các phép tính với các góc và đoạn thẳng đã biết để xác định khoảng cách. Nếu bạn cần thêm chỉ dẫn về cách tính cụ thể, hãy cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư