Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho hình tứ giác MNPQ, gọi A, B là các điểm trên các AB, CD. CMR

0 Xem trả lời
Hỏi chi tiết
30
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh các điều kiện trong bài toán về tứ giác MNPQ và các điểm A, B trên các cạnh AB, CD, chúng ta sẽ lần lượt xem xét từng trường hợp.

### Bài 14:
Cho tứ giác MNPQ, gọi A, B là các điểm trên các cạnh AB, CD. Chứng minh các điều sau:

a) **MBQ là hình bình hành:**
- Để chứng minh MBQ là hình bình hành, ta cần chứng minh rằng hai cặp cạnh đối diện bằng nhau.
- Xét các đoạn thẳng MB và AQ, nếu MB // AQ và MB = AQ thì MBQ là nơi được.

b) **NAPB là hình bình hành:**
- Tương tự như trên, ta cần chứng minh rằng NAP và BP là các cặp cạnh đối diện bằng nhau và song song.

c) **MB = AP:**
- Qua tính chất của hai hình bình hành MBQ và NAPB, tính chất này sẽ được thỏa mãn nếu MBQ và NAPB đều có các cạnh tương ứng bằng nhau.

### Bài 15:
Cho hình chữ nhật ABCD, gọi P, Q là các điểm trên AB, CD sao cho AM = CN. Chứng minh:

a) **Tứ giác AMCN là hình bình hành:**
- Ta cần chứng minh rằng AM = CN và AC // PM.

b) **Có đường chéo AE, BD và MN cùng đi qua một điểm:**
- Với tính chất của tứ giác AMCN, ta có thể sử dụng định lý về giao điểm của hai đường chéo trong hình bình hành để chứng minh điều này.

Nếu bạn cần chi tiết hơn về từng phần hoặc yêu cầu cụ thể ở đâu, hãy cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×