----- Nội dung dịch tự động từ ảnh ----- Bài 2 : Cho M = \[\left[ \frac{x^2}{x^3 - 4x + 6 - 3x + \frac{1}{x + 2}} \right] \cdot \left( x - 2 + \frac{10 - x^2}{x + 2} \right)\] a. Tìm điều kiện xác định của M b. Rút gọn M c. Tính giá trị của M khi \(|x| = \frac{1}{2}\) Liên hệ tài liệu word toàn SDT và zalo: 039.373.2038
1 Xem trả lời
23 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the problem related to the matrix \( M \), we need to follow the steps outlined in the question: ### a. Find the conditions for the matrix \( M \) to be defined: The matrix \( M \) includes several rational functions. For \( M \) to be defined, we need to identify the values of \( x \) that do not cause any denominators to equal zero. 1. **First term:** \(\frac{x^2}{x^3 - 4x}\) Denominator: \(x^3 - 4x = x(x^2 - 4) = x(x - 2)(x + 2)\) This term is undefined for \( x = 0, 2, -2 \). 2. **Second term:** \(\frac{6}{6 - 3x}\) Denominator: \(6 - 3x = 0 \Rightarrow x = 2\). This term is undefined for \( x = 2 \). 3. **Third term:** \(\frac{1}{x + 2}\) Denominator: \(x + 2 = 0 \Rightarrow x = -2\). This term is undefined for \( x = -2 \). 4. **Last term in the multiplication:** \(\frac{10 - x^2}{x + 2}\) Same condition as before, undefined for \( x = -2 \). ### Summary of restrictions: - **The function \( M \) is undefined for:** \( x = 0, 2, -2 \). ### b. Simplify the matrix \( M \): We can simplify \( M \) by substituting the various expressions and performing algebraic operations. However, we need the complete rational expression to provide a clear simplification. Let's denote \( N(x) = x - 2 + \frac{10 - x^2}{x + 2} \) which can be simplified separately. ### c. Calculate the value of \( M \) when \( |x| = \frac{1}{2} \): We will evaluate \( M \) at \( x = \frac{1}{2} \) and observe if it is within the defined conditions. If it is valid, we substitute \( x = \frac{1}{2} \) into the simplified expression of \( M \) to find its value. ### Summary: 1. Conditions for \( M \) to be defined: \( x \neq 0, 2, -2 \). 2. To simplify \( M \), substitute and combine terms. 3. Value at \( |x| = \frac{1}{2} \): substitute \( x = \frac{1}{2} \) in the simplified \( M \). If you have further instructions on how to simplify or compute \( M \), please provide the explicit form of \( M \).