Bài tập  /  Bài đang cần trả lời

Giải phương trình bằng cách đặt ẩn phụ:a)3.x2+x2−2x2+x−1=0b)x2−4x+22+x2−4x−4=0c)x−x=5x+7d)xx+1−10⋅x+1x=3

Giải phương trình bằng cách đặt ẩn phụ:

a)3.x2+x2−2x2+x−1=0b)x2−4x+22+x2−4x−4=0c)x−x=5x+7d)xx+1−10⋅x+1x=3

1 Xem trả lời
Hỏi chi tiết
15
0
0
CenaZero♡
09/09/2024 22:50:11

a)

3·x2+x2-2x2+x-1=0(1)

Đặt t = x2 + x,

Khi đó (1) trở thành : 3t2 – 2t – 1 = 0 (2)

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm t1 = 1; t2 = c/a = -1/3.

+ Với t = 1 ⇒ x2 + x = 1 ⇔ x2 + x – 1 = 0 (*)

Có a = 1; b = 1; c = -1 ⇒ Δ = 12 – 4.1.(-1) = 5 > 0

(*) có hai nghiệm

Có a = 3; b = 3; c = 1 ⇒ Δ = 32 – 4.3.1 = -3 < 0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm 

b)

x2−4x+22+x2−4x−4=0⇔x2−4x+22+x2−4x+2−6=0(1)

Đặt x2 – 4x + 2 = t,

Khi đó (1) trở thành: t2 + t – 6 = 0 (2)

Giải (2): Có a = 1; b = 1; c = -6

⇒ Δ = 12 – 4.1.(-6) = 25 > 0

⇒ (2) có hai nghiệm

+ Với t = 2 ⇒ x2 – 4x + 2 = 2

⇔ x2 – 4x = 0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3 ⇒ x2 – 4x + 2 = -3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5 ⇒ Δ’ = (-2)2 – 1.5 = -1 < 0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Khi đó (1) trở thành: t2 – 6t – 7 = 0 (2)

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm t1 = -1; t2 = -c/a = 7.

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

⇔ t2 – 10 = 3t ⇔ t2 – 3t – 10 = 0 (2)

Giải (2): Có a = 1; b = -3; c = -10

⇒ Δ = (-3)2 - 4.1.(-10) = 49 > 0

⇒ (2) có hai nghiệm:

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×