Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt POM^;OM=R0≤α≤π3;R>0Gọi V là khối tròn xoay thu được khi quay tam giác đó quanh trục Ox (H.63).
Tính thể tích của V theo α và R
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: OP = OM.cosα = R. cosα
Phương trình đường thẳng OM đi qua O nên có dạng: y = k.x
OM tạo với trục hoành Ox 1 góc
⇒ Hệ số góc k = tanα
⇒ OM: y = x.tanα
Vậy khối tròn xoay được tạo bởi hình phẳng giới hạn bởi đường thẳng y = x.tanα; y = 0; x = 0; x = R.cosα quay quanh trục Ox
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |