Cho M, N, P lần lượt là các trung điểm của ba cạnh BC, CA, AB của tam giác ABC. Chứng tỏ rằng ba đoạn thẳng AM, BN, CP cắt nhau tại một điểm nằm ở 2/3 của mỗi đoạn thẳng đó kể từ đỉnh.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau.
B2: => S( AOB) =2/3 S(ANB) => OB = 2/3 BN S(AOC) =2/3 S(ACP) => OC =2/3 CP S(AOB) = 2/3 S(AMB)
=> OA = 2/3 AM
B3: kết luận
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |