Bài tập  /  Bài đang cần trả lời

Cho M, N, P lần lượt là các trung điểm của ba cạnh BC, CA, AB của tam giác ABC. Chứng tỏ rằng ba đoạn thẳng AM, BN, CP cắt nhau tại một điểm nằm ở 2/3 của mỗi đoạn thẳng đó kể từ đỉnh.

Cho M, N, P lần lượt là các trung điểm của ba cạnh BC, CA, AB của tam giác ABC. Chứng tỏ rằng ba đoạn thẳng AM, BN, CP cắt nhau tại một điểm nằm ở 2/3 của mỗi đoạn thẳng đó kể từ đỉnh.

1 Xem trả lời
Hỏi chi tiết
8
0
0
Tôi yêu Việt Nam
09/09/2024 23:53:40

B1: Chứng minh AM, BN, CP chia tam giác ABC thành 6 tam giác có diện tích bằng nhau.

B2: => S( AOB) =2/3 S(ANB) => OB = 2/3 BN S(AOC) =2/3 S(ACP) => OC =2/3 CP S(AOB) = 2/3 S(AMB)

=> OA = 2/3 AM

B3: kết luận

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×