Cho bốn điểm A, B, C, D như hình bên. Hãy tìm một điểm M sao cho tổng MA + MB + MC + MD là nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
* Nếu M không trùng với giao điểm của AC và BD
Trong ΔAMC, ta có: MA + MC > AC (bất đẳng thức tam giác)
Trong ΔMBD, ta có: MB + MD > BD (bất đẳng thức tam giác)
* Nếu M trùng với giao điểm AC và BD
Ta có: MA + MC = AC
MB + MD = BD
+) Kết hợp cả hai trường hợp, suy ra: MA + MC ≥ AC
Và MB + MD ≥ BD (dấu bằng xảy ra khi M trùng với giao điểm của AC và BD)
Suy ra: MA + MB + MC + MD ≥ AC + BD
Vậy MA + MB + MC + MD = AC + BD bé nhất khi đó M là giao điểm của AC và BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |