Cho tam giác ABC có hai đường trung tuyến AD, BE vuông góc với nhau. Chứng minh rằng BC < 2AC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi giao điểm của hai đường thẳng AD và BE là G.
+) Xét tam giác BDG có góc ∠D1 là góc ngoài tam giác nên :
+)Xét tam giác ADC có ∠D1 + ∠A + ∠C = 180º mà ∠D1 > 90º nên ∠D1 là góc lớn nhất trong tam giác đó:
Suy ra: ∠D1 > ∠A
Suy ra: AC > CD ( cạnh đối diện với góc lớn hơn thì lớn hơn ). (1)
+) Mà D là trung điểm của BC nên (2)
Từ (1) và (2) suy ra: hay 2AC > BC ( điều phải chứng minh )
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |