Chứng minh rằng một số tự nhiên khác 0, có số lượng các ước là một số lẻ thì số tự nhiên đó là một số chính phương
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số tự nhiên đó là M , phân tích M ra các thừa số nguyên tố, giả sử : M=axbycz... Số lượng các ước của M là (x+1)(y+1)(z+1)… tích này là 1 số lẻ nên các thừa số đều lẻ suy ra x, y, z,… đều chẵn: x = 2x’; y = 2y’; z = 2z’; … Lúc đó M=a2x'b2y'c2z'...=(ax'by'cz')2. Điều này chính tỏ M là một số chính phương.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |