Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ tia Hx vuông góc với AB tại P và tia Hy vuông góc vói AC tại Q. Trên các tia Hx, Hy lần lượt lấy các điếm D và E sao cho PH = PD, QH = QE. Chứng minh:
a) A là trung điểm của DE;
b) PQ = 12DE;
c) PQ = AH
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Chứng minh được tam giác ADH và AEH cân tại A.
Khi đó: DAP^=HAP , ^EAQ^=HAQ^ và AD = AH = AE.
Từ đó, suy ra được A, A, E thẳng hàng và A là trung điểm DE.
b) PQ là đường trung bình của tam giác DHE Þ ĐPCM.
c) Có AH = AD = AE = 0.5.DE, mà PQ = 0.5.DE Þ AH = PQ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |