Cho tam giác ABC, có A^ = 60°, trực tâm H. Gọi M là điểm đối xứng với H qua BC.
a) Chứng minh ∆BHC = ∆BMC.
b) Tính BMC^
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Chứng minh được DBHC = DBMC (c.c.c).
b) Gọi {C'} = CH Ç AB. Sử dụng định lý tổng 4 góc trong tứ giác AB'HC' ta tính được B'HC'^=1200
Ta có B'HC'^=BHC^ (đối đỉnh) và BCH^=BMC^ (do △BHC=△BMC) ⇒ BMC^=1200
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |