Cho tam giác ABC. Từ một điểm E trên cạnh AC vẽ đường thẳng song song với BC cắt AB tại F và đường thăng song song vói AB cắt BC tại D. Giả sử AE = BF, chứng minh:
a) Tam giác AED cân;
b) AD là phân giác của góc A.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì DE // AB (giả thiết) nên DE // FB
Lại có: EF // BC nên EF // BD
Từ đó suy ra: EFBD là hình bình hành
⇒ FB = ED
Mà AE = FB (giả thiết)
Nên AE = ED
Vậy tam giác AED cân tại E (đpcm)
b) Theo a) có tam giác AED cân tại E nên ADE^=DAE^ (1)
Vì DE // AB nên ADE^=BAD^ (so le trong) (2)
Từ (1) và (2) suy ra: DAE^=BAD^
⇒ AD là tia phân giác của A^ (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |